Static Analysis Driven Cache
Performance Testing

Abhijeet Banerjee Sudipta Chattopadhyay Abhik Roychoudhury

RTSS 2013, Vancouver

Caches: Why are they needed ?

Caches are used to bridge the performance gap between
CPU and DRAM

DRAM

Caches have a significant impact on performance

RTSS 2013, Vancouver 2

Impact on performance due to Caches

Cache Hit occurs when a memory block accessed by the processor
is in the cache ...

Otherwise it is a Cache Miss

Cache Misses are bad because they negatively impact performance

What kind of memory access patterns leads to

substantial cache misses ?

RTSS 2013, Vancouver 3

Cache Thrashing

Cache Thrashing occurs when a frequently used cache block

is replaced by another frequently used cache block
... as a result lots of Cache Misses

While(true){ ml and m2 conflict in cache

if(x > 5){ may lead to thrashing ...
Jmiaccessed b
lelse{ s d ¢t
/[Im2accessed =<2 = | > Set 2
e T access o m3
// m3 accessed results in Cache

cache hit
after first
RTSS 2013, Vancouver i‘l’er‘cﬂ'ion 4

}

Objective of our work

To develop a test generation framework which aims to
report all possible cache performance issues that may
exist in some program execution.

Program
I OUR Unique cache
Cache >N\ 1A el ¢ performance issues

Configuration (each issue is reported with a
symbolic formula on inputs
to reach that issue)

Test Inputs

RTSS 2013, Vancouver 5

It is not a profiling technique !

Program —_
Cache Config. —> Prog.r.am — Performance No guarantees
Profiling Issues for completeness
Vs
Program
> Our Performance & Symbolic
Issues
Cache Config.— Framework Formula

st nputs>

RTSS 2013, Vancouver 6

Key Idea

We reduce the problem of testing cache performance to an
equivalent functionality testing problem

Reduces the search space Explores the reduced search
for exploration space & generate test cases

Test
Cases

P— | Stagel |— P — | Stagell |—

|

Non-functional properties
—> encoded as assertions

Static Analysis

Static Analysis

Classification.of
Memory Block

Static Analysis

{m1,m2} maps to Cache Set 1
{m3} maps to CaChe SEt 2 RTSS 2013, Vancouver 8

Identifying Thrashing Scenarios

Extract memory blocks

Classification of > potentially involved |—— SetofCache
Memory Block

Thrashing Scenarios

in Cache Thrashing

Extract
always miss (AM)
not classified (NC) {m1,m2}
For each cache set _
e Set 1
_________________________ p Set 2

_____________________________________ Cache

RTSS 2013, Vancouver 9

Instrumentation

Encode each thrashing scenario as an assertion at
appropriate program location

Assert m1l & m2 do

entation not lead to thrashing
(__F-/'"__'“

Instrumentation Em—=EYe

Thrashing Sets
{m1,m2}

RTSS 2013, Vancouver 10

Generating Assertions

Direct-mapped cache

I
SET 0 due to mé6)
<= 0)
SET 1
SET 2
due to mb5)
SET 3 b <=0)
SET 4 —~
No cache
thrashing [m10__ . SET 5
N
< J

RTSS 2013, Vancouver 11

Dynamic Exploration

Exploration is performed to check the violation of
Instrumented assertions

Instrumented

Program \

RTSS 2013, Vancouver 12

Exploration by Greedy Strategy

(x<5)A (y<12) A (z£1)
=> a assertions checked

N .
assertions

, Exploration performed using
assertio

the Control Dependency Graph
CDG

RTSS 2013, Vancouver 13

Test Generation

Results are generated jn the format

Ex. < {m1,m2}, x>5>

Used to generate test cases

RTSS 2013, Vancouver 14

always hit (AH)
persistent (PS)

Cache analysis by
static analysis —> CHMC

(cache hit-miss
classification)

Assertion e
violated in (
Time Budget /
Test Suite <€ : Report vi.olated
All assertions
instrumented I

assertions \ ~— e o

violated

RTSS 2013, Vancouver

always miss (AM) \
not classified (NC) !

NC

1ented
ram

Assert ml & m2 do
not lead to thrashing

15

Experiments

e Instruction Caches RTS’ 00 (Theiling et al)
e Data Caches RTAS’ 11(our work)
LLVM
Chronos — Klee

STP

RTSS 2013, Vancouver 16

Evaluation

Unique assertions checked * 100
Assertion Coverage (AC) = oo

Unique assertions instrumented

100 % coverage implies all unique assertions have been checked at least once

Unique assertions violated * 100
Thrashing Potential (TP) = -------=--mmmmmmmmmmeeeeeeeeeee

Unique assertions instrumented

Gives an idea about the thrashing potential for a program, for a given cache configuration

RTSS 2013, Vancouver 17

Results - Instruction Caches

100 Papabench - AC

Q
&o 20 _' Papabench - TP
S —Nsichneu - AC
2 60 Nsich
9 —Nsichneu - TP

40 —Jetbench - AC

20 —Jetbench - TP

0 i

Time 300 seconds

RTSS 2013, Vancouver 18

100

Percentage
N iy (o))} (00]
o o o o

o

Results - Data Caches

— Papabench - AC

—Papabench - TP

——Nsichneu - AC
—Nsichneu - TP
—Jetbench - AC

—Jetbench - TP

l
Time 120 seconds

RTSS 2013, Vancouver

19

Observations

O Programs with lesser number of input
dependent paths were explored faster

O For most experiments, only a small fraction
of instrumented assertions were violated

O Most assertions were explored early. Shows
the goodness of directed search

Application: Design space exploration

Lower cache thrashing
Smaller, Less > Big, highly

associative cache < associative cache
Fast access, lower power consumption

500 -

400 -
o

® 300 -
()]
>
S 200
{
= 100 I
0 [[- [

2KB1- 2KB2- 4KB2- 8KB2- 8KBA4-

Way Way Way Way Way
Number of cache thrashing scenarios discovered for papabench,
for various cache configurations

Thrashing Scenarios

RTSS 2013, Vancouver 21

Application: Performance Optimization

Can be used to devise improved Cache Locking Techniques

Direct mapped cache
@ m1, m2, m3, m4 conflict in cache
z<5 z>5
A

Traditional Cache Locking
m1l m3 Either lock m1 OR m2 OR m3 OR m4
m2 m4

Conditional Cache Locking

Lock mM1ORm2IFz<5

— 2 — Lock m3ORmM41Fz>5

RTSS 2013, Vancouver 22

Related Work

Existing Work Our Work
4 N
Testing Functionality Testing Performance
PLDI 2005, OSDI 2008
. Y,
4 N
Profiling Complete
Not Complete
. Y,
Partitioning I/P Space N A
LCTES 2013 Automated
Requires manual effort No False Positives
May have false positives _)

RTSS 2013, Vancouver

23

Conclusion

O A test generation framework that stresses
the cache performance of a program

O Key novelty is in the systematic combination
of static analysis and dynamic test generation
via a set of instrumented assertions

O Applications in Design Space Exploration and
Performance Optimization

RTSS 2013, Vancouver 24

	Static Analysis Driven Cache Performance Testing
	Caches: Why are they needed ?
	Número de diapositiva 3
	Número de diapositiva 4
	Objective of our work
	It is not a profiling technique !
	Key Idea
	Static Analysis
	Número de diapositiva 9
	Instrumentation
	Generating Assertions
	Dynamic Exploration
	Número de diapositiva 13
	Test Generation
	Recap
	Número de diapositiva 16
	Número de diapositiva 17
	Results – Instruction Caches
	Results – Data Caches
	Observations
	Application: Design space exploration�
	Application: Performance Optimization
	Related Work
	Conclusion
	Número de diapositiva 25
	Número de diapositiva 26

