
Static Analysis Driven Cache
Performance Testing

Abhijeet Banerjee Sudipta Chattopadhyay Abhik Roychoudhury

1RTSS 2013, Vancouver

Caches: Why are they needed ?

DRAMCPU

CACHES

Caches have a significant impact on performance

2

Caches are used to bridge the performance gap between
CPU and DRAM

RTSS 2013, Vancouver

3

Cache Hit occurs when a memory block accessed by the processor
is in the cache …

Otherwise it is a Cache Miss

Cache Misses are bad because they negatively impact performance

Impact on performance due to Caches

What kind of memory access patterns leads to
substantial cache misses ?

RTSS 2013, Vancouver

4

Cache Thrashing occurs when a frequently used cache block
is replaced by another frequently used cache block

… as a result lots of Cache Misses

m3

m2m1

While(true){
if(x > 5){

// m1 accessed
}else{

// m2 accessed
}

// m3 accessed
}

Set 1

Set 2

Cache

m1 and m2 conflict in cache
may lead to thrashing ...

access to m3
results in
cache hit

after first
iteration

Cache Thrashing

RTSS 2013, Vancouver

Objective of our work

To develop a test generation framework which aims to
report all possible cache performance issues that may

exist in some program execution.

OUR
FRAMEWORK

Program

Cache
Configuration

Unique cache
performance issues

(each issue is reported with a
symbolic formula on inputs

to reach that issue)

5

Test Inputs
RTSS 2013, Vancouver

It is not a profiling technique !

Program
Profiling

Program

Cache Config.

Test Inputs

Performance
Issues

Our
Framework

Program

Cache Config.

Test Inputs

Performance
Issues

Symbolic
Formula

No guarantees
for completeness

Vs

6RTSS 2013, Vancouver

Key Idea

We reduce the problem of testing cache performance to an
equivalent functionality testing problem

Static Analysis

Instrumentation

Dynamic Explore

Test Generate

P P’

Non-functional properties
encoded as assertions

Reduces the search space
for exploration

Explores the reduced search
space & generate test cases

Test
CasesStage I Stage II

7

Static Analysis

8

Static Analysis
Program

Cache
Configuration

Classification of
Memory Block

always hit (AH)
persistent (PS)

always miss (AM)
not classified (NC)

{m1,m2} maps to Cache Set 1
{m3} maps to Cache Set 2 RTSS 2013, Vancouver

9

Identifying Thrashing Scenarios

Classification of
Memory Block

Extract memory blocks
potentially involved
in Cache Thrashing

Set of Cache
Thrashing Scenarios

{m1,m2}

Extract
always miss (AM)
not classified (NC)
For each cache set

RTSS 2013, Vancouver

Set 1

Set 2

Cache

Instrumentation

10

Encode each thrashing scenario as an assertion at
appropriate program location

Instrumentation

Thrashing Sets
{m1,m2}

RTSS 2013, Vancouver

(Conflicts to m6, due to m5)

(Conflicts to m5, due to m6)

Generating Assertions

x <= 5

m4

m7

m9

m10

m5

m6

m8

x > 5

y > 12 y <= 12

Conflicts
in cache

No cache
thrashing

C_m6++

C_m5++
assert (C_m5 <= 0 ∨ C_m6 <= 0)

assert (C_m5 <= 0 ∨ C_m6 <= 0)

Direct-mapped cache

Assertion violated
x > 5 ˄ y <= 12

11

SET 1

SET 0

SET 2

SET 3

SET 4

SET 5

RTSS 2013, Vancouver

Dynamic Exploration

12

Exploration is performed to check the violation of
Instrumented assertions

Instrumented
Program

Instrumented
Assertions

Test CasesCheck
Violation

Deviate

Report

Exploration

RTSS 2013, Vancouver

Negate one branch condition
Deviate to unexplored path

13

Exploration by Greedy Strategy

x ≤ 5

y ≤ 12

z ≤ 1 z > 1

y > 12

x > 5
α

assertions

β
assertions

(x ≤ 5) Λ (y ≤ 12) Λ (z ≤ 1)
=> α assertions checked

(x > 5) Λ (y ≤ 12) Λ (z ≤ 1)

(x > 5) Λ (y > 12) Λ (z ≤ 1)

=> 0 additional assertions checked

(x ≤ 5) Λ (y ≤ 12) Λ (z > 1)

=> β additional assertions checked

=> 0 additional assertions checked

Exploration performed using
the Control Dependency Graph

CDG

RTSS 2013, Vancouver

Test Generation

14

Results are generated in the format

<Thrashing Scenario, Formula on Input Variables>Ex. < {m1,m2} , x>5 >

Used to generate test cases

RTSS 2013, Vancouver

Recap

Cache analysis by
static analysis

Instrumentation
automatically adds
assertions to the program

Report violated
assertions

Explore a path
leading to
assertions

(symbolic exec)

Test Suite

15

Program
CHMC

(cache hit-miss
classification) Instrumented

Program

Assertion
violated in

Time Budget /

All
instrumented

assertions
violated

always hit (AH)
persistent (PS)

always miss (AM)
not classified (NC)

RTSS 2013, Vancouver

16

Experiments

Chronos
LLVM
Klee
STP

• Instruction Caches
• Data Caches

RTS’ 00 (Theiling et al)

RTAS’ 11(Our work)

RTSS 2013, Vancouver

17

Evaluation

Assertion Coverage (AC)

Thrashing Potential (TP)

Unique assertions checked * 100
= --

Unique assertions instrumented

Unique assertions violated * 100
= --

Unique assertions instrumented

100 % coverage implies all unique assertions have been checked at least once

Gives an idea about the thrashing potential for a program, for a given cache configuration

RTSS 2013, Vancouver

Results – Instruction Caches

18

0

20

40

60

80

100

120

140

Pe
rc

en
ta

ge

Time

Papabench - AC
Papabench - TP
Nsichneu - AC
Nsichneu - TP
Jetbench - AC
Jetbench - TP

300 seconds

RTSS 2013, Vancouver

Results – Data Caches

19

0

20

40

60

80

100

120

140

Pe
rc

en
ta

ge

Time

Papabench - AC
Papabench - TP
Nsichneu - AC
Nsichneu - TP
Jetbench - AC
Jetbench - TP

120 seconds

RTSS 2013, Vancouver

Observations

o Programs with lesser number of input
dependent paths were explored faster

o For most experiments, only a small fraction
of instrumented assertions were violated

o Most assertions were explored early. Shows
the goodness of directed search

20RTSS 2013, Vancouver

Application: Design space exploration

21

Smaller, Less
associative cache

Big, highly
associative cache

Lower cache thrashing

Fast access, lower power consumption

Number of cache thrashing scenarios discovered for papabench,
for various cache configurations

0

100

200

300

400

500

2 KB 1-
Way

2 KB 2-
Way

4 KB 2-
Way

8 KB 2-
Way

8 KB 4-
Way

Th

ra
sh

in
g

Sc
en

ar
io

s
U

nc
ov

er
ed

RTSS 2013, Vancouver

22

Application: Performance Optimization

IF z ≤ 5

m1
m2

m3
m4

m1, m2, m3, m4 conflict in cache

z ≤ 5 z > 5

Traditional Cache Locking
Either lock m1 OR m2 OR m3 OR m4

Conditional Cache Locking
Lock m1 OR m2 IF z ≤ 5
Lock m3 OR m4 IF z > 5

Can be used to devise improved Cache Locking Techniques

Direct mapped cache

RTSS 2013, Vancouver

Related Work

23

Testing Functionality
PLDI 2005, OSDI 2008

Testing Performance

Profiling
Not Complete

Complete

Partitioning I/P Space
LCTES 2013

Requires manual effort
May have false positives

Automated
No False Positives

Existing Work Our Work

RTSS 2013, Vancouver

Conclusion

o A test generation framework that stresses
the cache performance of a program

o Key novelty is in the systematic combination
of static analysis and dynamic test generation
via a set of instrumented assertions

o Applications in Design Space Exploration and
Performance Optimization

24RTSS 2013, Vancouver

	Static Analysis Driven Cache Performance Testing
	Caches: Why are they needed ?
	Número de diapositiva 3
	Número de diapositiva 4
	Objective of our work
	It is not a profiling technique !
	Key Idea
	Static Analysis
	Número de diapositiva 9
	Instrumentation
	Generating Assertions
	Dynamic Exploration
	Número de diapositiva 13
	Test Generation
	Recap
	Número de diapositiva 16
	Número de diapositiva 17
	Results – Instruction Caches
	Results – Data Caches
	Observations
	Application: Design space exploration�
	Application: Performance Optimization
	Related Work
	Conclusion
	Número de diapositiva 25
	Número de diapositiva 26

