Combinatorial Abstraction Refinement for Feasibility Analysis

Martin Stigge

Uppsala University, Sweden

Joint work with Wang Yi
Problem Overview

Workload Model
- Task A
- Task B
- Task C

Scheduler Model
- EDF/Static Prio/...

Schedulable?
- Task A
- Task B

Our Setting:
- DRT tasks
- Static Priorities
- Precise Test
Problem Overview

Workload Model

- High priority
 - Task A
 - Task B

- Medium priority
 - Task A
 - Task B

- Low priority
 - Task A

Scheduler Model

EDF/Static Prio/...

Our Setting:
- DRT tasks
- Static Priorities
- Precise Test
The Digraph Real-Time (DRT) Task Model
(S. et al, RTAS 2011)

- Generalizes periodic, sporadic, GMF, RRT, ...
- Directed graph for each task
 - Vertices J: jobs to be released (with WCET and deadline)
 - Edges (J_i, J_j): minimum inter-release delays $p(J_i, J_j)$
DRT: Semantics

Path \(\pi = (J_1, J_2) \)
Path \(\pi = (J_1, J_2, J_3) \)
DRT: Semantics

Path \(\pi = (J_1) \)
Path $\pi = (J_1, J_2)$
DRT: Semantics

Path \(\pi = (J_1, J_2, J_3) \)
Complexity Results for DRT Schedulability

EDF
- *Pseudo-polynomial*
- Dbf-based analysis
 [RTAS 2011]
- Equivalent to Feasibility

Static Priorities
- Strongly \textit{coNP-hard}
- Already for trees or cycles
 [ECRTS 2012]
- Efficient solution?
Complexity Results for DRT Schedulability

<table>
<thead>
<tr>
<th>EDF</th>
<th>Static Priorities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pseudo-polynomial</td>
<td>Strongly coNP-hard</td>
</tr>
<tr>
<td>Dbf-based analysis</td>
<td>Already for trees or cycles</td>
</tr>
<tr>
<td>[RTAS 2011]</td>
<td>[ECRTS 2012]</td>
</tr>
<tr>
<td>Equivalent to Feasibility</td>
<td>Efficient solution?</td>
</tr>
</tbody>
</table>
Fahrplan

1 Problem Introduction
 - Digraph Real-Time Tasks
 - Complexity Results

2 Analysis Approach
 - Request Functions
 - Rf-based Test

3 Combinatorial Abstraction Refinement
 - Abstraction Trees
 - Refinement Procedure

4 Evaluation
Fahrplan

1 Problem Introduction
 - Digraph Real-Time Tasks
 - Complexity Results

2 Analysis Approach
 - Request Functions
 - Rf-based Test

3 Combinatorial Abstraction Refinement
 - Abstraction Trees
 - Refinement Procedure

4 Evaluation
Testing the Scheduling Window

High priority

Medium priority

Low priority

Is C schedulable?

Scheduling window of C
Testing the Scheduling Window

Is C schedulable?

Scheduling window of C
Request Functions

1. $J_1 \langle 6, 10 \rangle \rightarrow J_2 \langle 5, 25 \rangle$
2. $J_2 \langle 5, 25 \rangle \rightarrow J_3 \langle 1, 10 \rangle$
3. $J_3 \langle 1, 10 \rangle \rightarrow J_4 \langle 2, 12 \rangle$
4. $J_4 \langle 2, 12 \rangle \rightarrow J_1 \langle 6, 10 \rangle$
5. $J_4 \langle 2, 12 \rangle \rightarrow J_5 \langle 10, 50 \rangle$

$rf(t)$

t
Lemma

A job J is schedulable iff for all combinations of request functions $rf^{(T)}$ of higher priority tasks:

$$\exists t \leq d(J) : e(J) + \sum_{T \in \tau} rf^{(T)}(t) \leq t.$$ \hspace{1cm} (1)

![Diagram showing the scheduling window and the condition for schedulability](image)
Lemma

A job J is schedulable iff for all combinations of request functions $rf^{(T)}$ of higher priority tasks:

\[\exists t \leq d(J) : e(J) + \sum_{T \in \tau} rf^{(T)}(t) \leq t. \]

(1)
Lemma

A job J is schedulable iff for all combinations of request functions $rf(T)$ of higher priority tasks:

$$\exists t \leq d(J) : e(J) + \sum_{T \in \tau} rf(T)(t) \leq t.$$ \hfill (1)

Problem: Naive test *double exponential!*

1. Number of paths per task
2. Number of combinations
Request Functions: Domination

\[\langle 6, 10 \rangle, \langle 5, 25 \rangle, \langle 10, 50 \rangle, \langle 1, 10 \rangle, \langle 2, 12 \rangle \]

\[rf(t) \]

\[rf(J_1, J_2, J_3) \]

Martin Stigge
Combinatorial Abstraction Refinement
Request Functions: Domination

\[J_1 \langle 6, 10 \rangle \quad J_2 \langle 5, 25 \rangle \quad J_3 \langle 1, 10 \rangle \quad J_4 \langle 2, 12 \rangle \quad J_5 \langle 10, 50 \rangle \]

\[rf(t) \]

\[rf(J_1, J_2, J_3) \quad rf(J_3, J_4, J_2) \]
Request Functions: Domination

\[J_1 \langle 6, 10 \rangle \rightarrow J_2 \langle 5, 25 \rangle \rightarrow J_3 \langle 1, 10 \rangle \rightarrow J_5 \langle 10, 50 \rangle \]

\[J_2 \langle 13 \rangle \rightarrow J_4 \langle 12 \rangle \rightarrow J_3 \langle 25 \rangle \rightarrow J_5 \langle 50 \rangle \]

\[rf(t) \]

\[rf(J_1, J_2, J_3) \rightarrow rf(J_3, J_4, J_2) \]
Combinatorial Explosion

Lemma

A job J is schedulable if for all combinations of request functions $rf^{(T)}$ of higher priority tasks:

$$\exists t \leq d(J) : e(J) + \sum_{T \in \tau} rf^{(T)}(t) \leq t.$$ (1)

What about the Combinatorial Explosion?
Overapproximation: \textit{mrf}

- **Approach:** Define an overapproximation
- \textit{mrf}^{(T)}(t): \textit{Maximum} of all \textit{rf}^{(T)}(t) for a task \textit{T}
 - “Request-Bound Function”
 - “Workload-Arrival Function”
- **New test:**
 \[\exists t \leq d(J) : e(J) + \sum_{T \in \tau} \textit{mrf}^{(T)}(t) \leq t. \]
- **Efficient:** Only \textit{one} test, no combinatorial explosion
Overapproximation: \(mrf \)

- **Approach:** Define an overapproximation
- \(mrf^{(T)}(t) \): *Maximum* of all \(rf^{(T)}(t) \) for a task \(T \)
 - “Request-Bound Function”
 - “Workload-Arrival Function”
- **New test:**
 \[\exists t \leq d(J) : e(J) + \sum_{T \in \tau} mrf^{(T)}(t) \leq t. \]
- **Efficient:** Only one test, no combinatorial explosion
- **Problem:** Imprecise!
Overapproximation: mrf

- Approach: Define an overapproximation
- $mrf^T(t)$: Maximum of all $rf^T(t)$ for a task T
 - “Request-Bound Function”
 - “Workload-Arrival Function”
- New test:
 \[
 \exists t \leq d(J) : e(J) + \sum_{T \in \tau} mrf^T(t) \leq t.
 \]
- **Efficient**: Only one test, no combinatorial explosion
- Problem: Imprecise!

How can we get efficiency and precision?
Define an *abstraction tree* per task:

- Leaves are concrete *rf*
- Each node: maximum function of child nodes
- Root is *mrf*, maximum of *all rf*
Define an *abstraction tree* per task:

- Leaves are concrete *rf*
- Each node: maximum function of child nodes
- Root is *mrf*, maximum of all *rf*
Abstraction Tree

Define an *abstraction tree* per task:

- Leaves are concrete *rf*
- Each node: maximum function of child nodes
- Root is *mrf*, maximum of all *rf*
Abstraction Tree

Define an *abstraction tree* per task:

- Leaves are concrete *rf*
- Each node: maximum function of child nodes
- Root is *mrf*, maximum of *all* *rf*
Define an *abstraction tree* per task:

- Leaves are concrete *rf*
- Each node: maximum function of child nodes
- Root is *mrf*, maximum of *all* *rf*
New Algorithm:

- Test *one* combination of all \(mrf \).
- If schedulable: done
- Otherwise: Replace *one* \(mrf \) with all child nodes,
 - 2 new combinations to test
- Repeat until:
 - All combinations show schedulability, or
 - A combination of leaves shows non-schedulability
Combinatorial Abstraction Refinement: Example

Task T_1

Task T_3

Task T_3

Task T_4

Testing rf tuples:

$$(A, A, A, A)$$

Result: Schedulable!

Total combinations: $3 \cdot 2 \cdot 4 \cdot 3 = 72$; Tested: 5 (!)
Combinatorial Abstraction Refinement: Example

Testing rf tuples:

\((A, A, A, A)\) ?

Test: \(\exists t \leq d(J) : e(J) + \sum_{T \in \tau} rf(T)(t) \leq t\)
Combinatorial Abstraction Refinement: Example

Task T_1

Task T_3

Task T_3

Task T_4

Testing rf tuples:

$$(A, A, A, A)$$

UNSCHED
Testing \(rf \) tuples:

\[
\begin{align*}
(A, A, A, A) && \text{UNSCHED} \\
(B, A, A, A) \\
(C, A, A, A)
\end{align*}
\]
Combinatorial Abstraction Refinement: Example

Testing rf tuples:

- \((A, A, A, A)\) UNSCHED
- \((B, A, A, A)\)
- \((C, A, A, A)\)

Test: \(\exists t \leq d(J) : e(J) + \sum_{T \in \tau} rf(T)(t) \leq t\)
Combinatorial Abstraction Refinement: Example

Testing rf tuples:

- (A, A, A, A): UNSCHED
- (B, A, A, A): SCHED
- (C, A, A, A)

Result: Schedulable!

Total combinations: $3 \cdot 2 \cdot 4 \cdot 3 = 72$; Tested: 5!
Combinatorial Abstraction Refinement: Example

Testing rf tuples:

- (A, A, A, A, A): UNSCHED
- (B, A, A, A, A): SCHED
- (C, A, A, A, A): ?

Test: $\exists t \leq d(J) : e(J) + \sum_{T \in \tau} rf(T)(t) \leq t$
Combinatorial Abstraction Refinement: Example

Task T_1

Task T_3

Task T_3

Task T_4

Testing rf tuples:

- (A, A, A, A): UNSCHED
- (B, A, A, A): SCHED
- (C, A, A, A): UNSCHED
- (C, A, A, A): UNSCHED
Combinatorial Abstraction Refinement: Example

Task T_1

Testing rf tuples:

- (A, A, A, A): UNSCHED
- (B, A, A, A): SCHED
- (C, A, A, A): UNSCHED
- (C, A, B, A)
- (C, A, C, A)

Result: Schedulable!

Total combinations: $3 \cdot 2 \cdot 4 \cdot 3 = 72$; Tested: 5
Combinatorial Abstraction Refinement: Example

Testing rf tuples:

- (A, A, A, A) \textbf{UNSCHED}
- (B, A, A, A, A) \textbf{SCHED}
- (C, A, A, A) \textbf{UNSCHED}
- (C, A, B, A) ?
- (C, A, C, A)

\textbf{Test: } $\exists t \leq d(J) : e(J) + \sum_{T \in \tau} rf(T)(t) \leq t$
Combinatorial Abstraction Refinement: Example

Testing rf tuples:

- (A, A, A, A): UNSCHED
- (B, A, A, A): SCHED
- (C, A, A, A): UNSCHED
- (C, A, B, A): SCHED
- (C, A, C, A):

Result: Schedulable!

Total combinations: $3 \cdot 2 \cdot 4 \cdot 3 = 72$; Tested: 5
Combinatorial Abstraction Refinement: Example

Testing rf tuples:

\[(A, A, A, A) \quad \text{UNSCHED} \]
\[(B, A, A, A) \quad \text{SCHED} \]
\[(C, A, A, A) \quad \text{UNSCHED} \]
\[(C, A, B, A) \quad \text{SCHED} \]
\[(C, A, C, A) \quad ? \]

Test: \(\exists t \leq d(J) : e(J) + \sum_{T \in \tau} rf(T)(t) \leq t \)
Combinatorial Abstraction Refinement: Example

Task T_1

Testing rf tuples:

- (A, A, A, A) UNSCHED
- (B, A, A, A) SCHED
- (C, A, A, A) UNSCHED
- (C, A, B, A) SCHED
- (C, A, C, A) SCHED

Result: *Schedulable!*
Combinatorial Abstraction Refinement: Example

Task \(T_1 \)

- A
- B
- C
- D
- E

Task \(T_3 \)

- A
- B
- C

Task \(T_3 \)

- A
- B
- C
- D
- E
- F
- G

Task \(T_4 \)

- A
- B
- C
- D
- E

Testing \(rf \) tuples:

- \((A, A, A, A)\) \(\text{UNSCHEDE}\)
- \((B, A, A, A)\) \(\text{SCHED}\)
- \((C, A, A, A)\) \(\text{UNSCHEDE}\)
- \((C, A, B, A)\) \(\text{SCHED}\)
- \((C, A, C, A)\) \(\text{SCHED}\)

Result: \(\text{Schedulable!}\)

Total combinations: \(3 \cdot 2 \cdot 4 \cdot 3 = 72\); Tested: 5 (!)
Fahrplan

1 Problem Introduction
 - Digraph Real-Time Tasks
 - Complexity Results

2 Analysis Approach
 - Request Functions
 - Rf-based Test

3 Combinatorial Abstraction Refinement
 - Abstraction Trees
 - Refinement Procedure

4 Evaluation
Fahrplan

1 Problem Introduction
 - Digraph Real-Time Tasks
 - Complexity Results

2 Analysis Approach
 - Request Functions
 - Rf-based Test

3 Combinatorial Abstraction Refinement
 - Abstraction Trees
 - Refinement Procedure

4 Evaluation
Evaluation: Runtime vs. Utilization

Comparing runtimes of

- EDF-test using dbf (pseudo-polynomial)
- SP-test based on *Combinatorial Abstraction Refinement*
Evaluation: Tested vs. Total Combinations

10^5 samples of single-job tests.
- Executed tests: in 99.9% of all cases, less than 100
- Total combinations possible: 10^{12} or more
Summary and Outlook

- Solve coNP-hard problem
 - Previously unsolved
 - Efficient method
- Abstraction refinement
 - General method
 - Combinatorial problems
 - Needs abstraction lattice

- Ongoing work:
 - Response-Time Analysis (submitted)
 - Apply to other problems
Q & A

Thanks!