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Decomposition of the Analysis
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Typical analysis and optimizations in real-time systems are decomposed
into two phases

Phase 1: Worst-case execution time (WCET) of a stand-alone program

using WCET analyzers such as aiT or Chronous.

Phase 2: Worst-case response time of a periodic/sporadic task by
considering the competition with the other tasks

analyzing the worst-case interference from the other tasks

many techniques such as utilization-based tests, response time analysis,

busy-interval techniques, real-time calculus, max-plus algebra, etc.
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Sporadic Task Models
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Sporadic Task τi:

Ti is the minimal time between any two consecutive job releases

A relative deadline Di for each job from task τi

(Ci,Ti,Di) is the specification of sporadic task τi, where Ci is the
worst-case execution time.

implicit deadline: Di = Ti, for every task τi,

constrained deadline: Di ≤ Ti, for every task τi

arbitrary deadline: otherwise



Cost-Dependent WCET
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Deriving WCET is not a simple problem

By spending more cost, the WCET may be reduced

Using more SRAM in the system or larger cache size
Using code redundancy or execution reordering to improve the reliability

By reducing the quality of computation, the WCET may be reduced

Imprecise computation
Multiple versions of execution plans with different qualities

QRAM Model (Rajkumar et al. RTSS’97)

QRAM model: maximizing the system quality by choosing proper versions
to meet the timing constraints of real-time tasks.
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Minimum Cost Synthesis Problem
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Input:

A sporadic real-time task set T
Each task τi ∈ T has

Ti: minimum inter-arrival time
Di: relative deadline

τi has wi ≥ 1 different versions with different costs

θi(k) is the cost for the k-th version of task τi

C
θi(k)
i is the corresponding WCET

U
θi(k)
i =

C
θi(k)
i
Ti

as the utilization

Without loss of generality, θi(1) < θi(2) < · · · < θi(wi)

Output:

Select one version mi for task τi such that T be feasibly scheduled and the
system cost ∑τi∈T θi(mi) is minimized.
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Schedulability of EDF
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Implicit deadlines: EDF is feasible if and only if the total utilization
U = ∑τi∈T

Ci
Ti

is at most 100%.

Constrained/arbitrary deadlines: demand bound testing is required

t
0 1 2 3 4 5 6 7 8 9 10 11 12

1Ci

2Ci

3Ci

4Ci

5Ci

6Ci

dbf(τi, t)

Baruah et al. [RTSS 1990]: A task set T can be feasibly scheduled (under
EDF) on one processor if and only if

∀t ≥ 0, ∑
τi∈T

dbf(τi, t) =
n

∑
i=1

⌊
t + Ti −Di

Ti

⌋
Ci ≤ t.
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Rate-Monotonic (RM) Scheduling
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Priority Definition: A task with a smaller period has higher priority, in
which ties are broken arbitrarily, i.e., Ti ≤ Tj if i ≤ j.

Least utilization upper bound for implicit deadlines:

U = ∑τi∈T
Ci
Ti
≤ n(2

1
n − 1) for n tasks

If the following condition holds, the task set is schedulable under RM:

∀τi ∈ T ∃t with 0 < t ≤ Di and Wi(t) ≤ t,

where Wi(t) of task τi is defined as follows:

Wi(t) = Ci +
i−1

∑
j=1

⌈
t

Tj

⌉
Cj.
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Optimality of RM and EDF
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For uniprocessor scheduling, if there exists a feasible schedule,
scheduling jobs by using EDF is also feasible.

EDF scheduling algorithm is optimal

If a set of n implicit-deadline tasks, can be feasibly scheduled on a
processor with a fixed-priority assignment, assigning tasks by using rate
monotonic scheduling also leads to a feasible schedule.

RM scheduling algorithm is optimal for fixed-priority scheduling
Deadline Monotonic (DM) scheduling algorithm is optimal for
fixed-priority scheduling



Schedulability
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The issue for uniprocessor scheduling is on how to analyze the
schedulability.

Verifying the schedulability is NP-hard or coNP-hard

Approximations are possible, but what do we approximate when only
binary decisions (Yes or No) have to be made?

Answers like probabilistic guarantee are unlikely preferred, e.g., the task
set is 99% schedulable.
Resource augmentation by : requires a faster platform
Resource augmentation by : requires a better platform
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Resource Augmentation
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For an algorithm A with a β resource augmentation factor, it guarantees
that

⇒
if the task set (system) is schedulable (feasible), Algorithm A will also
returns a schedulable (feasible) answer by speeding up the system by a
factor β, or

⇐
if Algorithm A does not return a schedulable (feasible) answer, the system
is also unschedulable (infeasible) by slowing down by a factor β.
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Time Demand Function Revisit for RM
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Let wi(t) of the task τi be defined as follows

wi(t) =

⌈
t

Ti

⌉
Ci.

t
0 1 2 3 4 5 6 7 8 9 10 11 12

wi(t)

Wi(t) = Ci + ∑i−1
j=1

⌈
t

Tj

⌉
Cj

Schedulable if for each τi ∃t
with Wi(t) ≤ t.
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The linear approximation makes the schedulability test easier
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The resource augmentation factor is 2. [Albers and Slomka ECRTS’04]
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Define demand bound function dbf(τi, t) as

dbf(τi, t) = max

{
0,

⌊
t + Ti −Di

Ti

⌋}
Ci = max
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0,

⌊
t−Di
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⌋
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Ci.
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The linear approximation makes the schedulability test easier

The test can be done in O(n2)
The resource augmentation factor is 1.6322. [Chen and Chakraborty,
RTSS’11]
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Minimum Cost Synthesis Problem
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Input:

A sporadic real-time task set T
Each task τi ∈ T has

Ti: minimum inter-arrival time
Di: relative deadline

τi has wi ≥ 1 different versions with different costs

θi(k) is the cost for the k-th version of task τi

C
θi(k)
i is the corresponding WCET

U
θi(k)
i =

C
θi(k)
i
Ti

as the utilization

Without loss of generality, θi(1) < θi(2) < · · · < θi(wi)

Output:
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system cost ∑τi∈T θi(mi) is minimized.



Special Case for Implicit Deadlines with EDF

15 06,12,2013, in RTSS’13, Vancouver, Canada, by Dr. Jian-Jia Chen

The utilization bound 100% is a necessary and sufficient test.

The problem is equivalent to the minimum multiple-choice knapsack
problem

Given a set of items, each with wi versions and each version has a weight
and a value, the objective is to choose one version in each item such that
the total weight is no more than a given limit and the total value is as
small as possible.

Many results are already known.
O. H. Ibarra and C. E. Kim. “Fast Approximation Algorithms for the Knapsack and
Sum of Subset Problems.” In: J. ACM (1975), pp. 463-468.
E. L. Lawler. “Fast Approximation Algorithms for Knapsack Problems”. In: Math.
Oper. Res. 4.4 (1979), pp. 339-356.



(α, β)-Approximation

16 06,12,2013, in RTSS’13, Vancouver, Canada, by Dr. Jian-Jia Chen

Suppose the optimal system cost is B∗(I) for an input instance I.

An algorithm has an α-approximation if it guarantees to have at most
α ·B∗(I) system cost for any input instance I

An (α, β)-approximation guarantees to have at most α ·B∗(I) system
cost by using β speed augmentation factor.

With respect to speeding-up: the derived solution is a feasible solution by
speeding up the platform to β, and has an α-approximation in the system
cost with respect to the original instance.
With respect to slowing-down: the derived solution is α-approximation
with respect to a problem instance by slowing down the platform to 1

β .

An optimal algorithm for the minimum multi-choice knapsack problem:

(1, 1) for EDF with implicit deadlines

(1, 1
ln 2 ) for RM with implicit deadlines
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Hardness of Approximation
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Theorem

Unless P = NP , there is no polynomial-time (α, 1)-approximation algorithm
for the minimum cost synthesis problem for any α ≥ 1 when considering EDF
or FP scheduling.

Proof

It is based on an L-reduction from the uniprocessor schedulability problem
for sporadic real-time tasks:

Each task has two versions

The one with cost equals to 1 has small execution time, and another one
is with “very high” cost with 50% reduction of the execution time.
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DM Scheduling for Constrained Deadlines
almost all the equations are different from the paper for simplicity
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Deadline Monotonic (DM) is optimal when Di ≤ Ti.
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Schedulability for DM
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Deadline Monotonic (DM) is optimal when Di ≤ Ti.

For a given selection of versions (m1,m2, . . . ,mi), task τi can be feasibly
scheduled by the DM scheduling if

i

∑
j=1

C
θj(mj)
j + Di ·

i

∑
j=1

U
θj(mj)
j ≤ Di

⇒
(

i−1

∑
j=1

C
θj(mj)
j + Di−1 ·

i−1

∑
j=1

U
θj(mj)
j

)

+

(
C

θi(mi)
i + Di ·U

θj(mj)
i + (Di −Di−1)

i−1

∑
j=1

U
θj(mj)
j

)
≤ Di
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Dynamic Programming
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What is the minimum cost to be feasible?

What is the minimum cost to be feasible for
the first i tasks under the approximation?

Two terms matter: the (sub-)demand

Di ·∑i
j=1 Uj and (sub-)demand ∑i

j=1 C
θj(mj)
j .

Suppose that G(i, δ, u) is the minimum system cost, represented by a
version selection m1,m2, . . . ,mi, for the first i tasks such that

the total utilization for the first i tasks is equal to u,

the total execution time for the first i tasks is equal to δ ·Di, and

∑k
j=1 C

θj(mj)

j

Dk
+ ∑k

j=1 U
θj(mj)
j ≤ 1 for any k = 1, 2, . . . , i.

t

demand

Di−1 Di
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Constructing G(i, δ, u) can be done by using the standard dynamic
programming approach.

Details [tighter definition and recursion] are in the paper
The minimum G(N, δ,u) for 0 ≤ δ ≤ 1 and 0 ≤ u ≤ 1 has a
(1, 2)-approximation factor for N tasks.
The solution is optimal on a slow-down platform with speed 1

2 .

It takes pseudo-polynomial time/space for building the table

Instead of building G(i, δ, u) for all possible values of δ and u

Approximate the values of interests
Build the table by a user-specified granularity σ
Lose some accuracy but earn the efficiency
(1, 2

1−η )-approximation with time complexity O((Nη )2 ∑N
i=1 wi) under the

DM scheduling by setting σ to 1⌈
3N
η

⌉ for any given η with 0 < η < 1
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Constructing G(i, δ, u) can be done by using the standard dynamic
programming approach.

Details [tighter definition and recursion] are in the paper
The minimum G(N, δ,u) for 0 ≤ δ ≤ 1 and 0 ≤ u ≤ 1 has a
(1, 2)-approximation factor for N tasks.
The solution is optimal on a slow-down platform with speed 1

2 .

It takes pseudo-polynomial time/space for building the table

Instead of building G(i, δ, u) for all possible values of δ and u

Approximate the values of interests
Build the table by a user-specified granularity σ
Lose some accuracy but earn the efficiency
(1, 2

1−η )-approximation with time complexity O((Nη )2 ∑N
i=1 wi) under the

DM scheduling by setting σ to 1⌈
3N
η

⌉ for any given η with 0 < η < 1

EDF
The some design philosophy also works for EDF scheduling (for arbitrary
deadlines) with some minor changes.
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No algorithm with finite approximation factors
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No algorithm with finite approximation factors

Algorithms with
constant approximation factors

APX
PTAS

PTAS (Polynomial-time Approximation Scheme): For each constant ε > 0,
a polynomial-time partitioning algorithm Aε, with approximation factor
(1 + ε).

complexity depends on 1
ε , which is assumed to be a constant, e.g., O(n

2
ε )

allows for a trade-off of run-time versus accuracy



d-Dimensional Representative Vector Set (Chen and
Chakraborty, ECRTS’12)
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Among t ∈ (0,∞], choose t1, . . . , td for density values
dbf(τi,tj)

tj
for

j = 1, . . . , d.

Representative For the accuracy

Constant dimensions For complexity

A d-dimensional representative vector set V for the given task set T under
a user-defined tolerable error 0 < η:

for any configuration T and the corresponding vector set V

γ(T ) ≥ max
j=1,2,...,d

∑
vi∈V

qi,j ≥ (
1

1 + η
)γ(T ),

Less sampling points Bounded error

where γ(T ) is the maximum density of T .
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Chen and Chakraborty, ECRTS’12: when Dmax
Dmin

is a constant, the
number of representative dimensions is a constant.

How do we achieve (1 + ε, 1 + η)-Approximation?

Build a d-dimensional representative vector set V for 1 + η speed-up
guarantee
The problem is reduced to a minimum-cost multiple choice
multiple-dimension knapsack problem

Set Z = min{N,
⌈
d
ε

⌉
}, bounded by a constant

Enumerate the combinations to select the versions for Z large tasks

Select the versions of the other N− Z light tasks by using linear

programming

Round the fractional variables to yield a feasible solution

Return the best found feasible solution as the result



Conclusion
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(α, β)-approximation for combinatorial optimization problems in RTS

With respect to speeding-up: the platform is speeded up to β to ensure
the feasibility and optimality
With respect to slowing-down: the derived solution is α-approximation
with respect to a problem instance by slowing down the platform to 1

β .

EDF DM (Di ≤ Ti)

pseudo-polynomial (1,1.6322) (1,2)

polynomial (1,1.6322
1−η ) (1, 2

1−η )

polynomial
( 1

1−ε , 1
1−η )

Dmax
Dmin

is a constant
???????
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