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Decomposition of the Analysis N( T

Karlsruhe Institute of Technology

u Typical analysis and optimizations in real-time systems are decomposed
into two phases

a Phase 1: Worst-case execution time (WCET) of a stand-alone program

m Phase 2: Worst-case response time of a periodic/sporadic task by
considering the competition with the other tasks
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m using WCET analyzers such as aiT or Chronous.
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Decomposition of the Analysis N( T

Karlsruhe Institute of Technology

u Typical analysis and optimizations in real-time systems are decomposed
into two phases
a Phase 1: Worst-case execution time (WCET) of a stand-alone program

m using WCET analyzers such as aiT or Chronous.

m Phase 2: Worst-case response time of a periodic/sporadic task by
considering the competition with the other tasks
m analyzing the worst-case interference from the other tasks
m many techniques such as utilization-based tests, response time analysis,
busy-interval techniques, real-time calculus, max-plus algebra, etc.
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Sporadic Task Models
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Sporadic Task 7:

u T is the minimal time between any two consecutive job releases

a A relative deadline D; for each job from task T

m (Cj, Ty, Dy) is the specification of sporadic task 7;, where Cj is the

worst-case execution time.

m implicit deadline: D; = Tj, for every task T,
m constrained deadline: D; < Tj, for every task T

m arbitrary deadline: otherwise

3 06,12,2013, in RTSS’13, Vancouver, Canada, by Dr. Jian-Jia Chen
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Cost-Dependent WCET

Karlsruhe Institute of Technology

a Deriving WCET is not a simple problem
au By spending more cost, the WCET may be reduced

u Using more SRAM in the system or larger cache size
m Using code redundancy or execution reordering to improve the reliability
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a Deriving WCET is not a simple problem
au By spending more cost, the WCET may be reduced

u Using more SRAM in the system or larger cache size

m Using code redundancy or execution reordering to improve the reliability
a By reducing the quality of computation, the WCET may be reduced

u Imprecise computation

u Multiple versions of execution plans with different qualities
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Cost-Dependent WCET ﬂ(IT
a Deriving WCET is not a simple problem
au By spending more cost, the WCET may be reduced

a Using more SRAM in the system or larger cache size

m Using code redundancy or execution reordering to improve the reliability

a By reducing the quality of computation, the WCET may be reduced

m Imprecise computation

m Multiple versions of execution plans with different qualities

QRAM Model (Rajkumar et al. RT'SS’97)

QRAM model: maximizing the system quality by choosing proper versions
to meet the timing constraints of real-time tasks.
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Minimum Cost Synthesis Problem

Input:
m A sporadic real-time task set T
m FEach task 7; € T has

u Ti: minimum inter-arrival time
m D;: relative deadline

m T7; has w; > 1 different versions with different costs
w 0;(k) is the cost for the k-th version of task T

a Cfi(k) is the corresponding WCET
fi(k) _ il R
w U;"" = —p— as the utilization

m Without loss of generality, 6;(1) < 6;(2) < --- < 6;(w;)
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Minimum Cost Synthesis Problem

Input:
m A sporadic real-time task set T
m FEach task 7; € T has

u Ti: minimum inter-arrival time
m D;: relative deadline

m T7; has w; > 1 different versions with different costs
w 0;(k) is the cost for the k-th version of task T

[ ] C?‘(k) is the corresponding WCET
_ 0: (k)
a Uig‘(k) = C‘T_ as the utilization

® Without loss of generality, 6;(1) < 6;(2) < --- < 6;(w;)

AT
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Output:

Select one version m; for task T; such that 7 be feasibly scheduled and the

system cost Y r. 7 6;(m;) is minimized.

06,12,2013, in RTSS’13, Vancouver, Canada, by Dr. Jian-Jia Chen



Schedulability of EDF AT
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a Implicit deadlines: EDF is feasible if and only if the total utilization
U=Yrer % is at most 100%.

u Constrained/arbitrary deadlines: demand bound testing is required
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Schedulability of EDF AT

te of Technology

a Implicit deadlines: EDF is feasible if and only if the total utilization
U=Yrer % is at most 100%.

u Constrained/arbitrary deadlines: demand bound testing is required

6C;

5C;

4C; o
)i

3C; oO——0O
20; _j

Baruah et al. [RTSS 1990]: A task set 7 can be feasibly scheduled (under
EDF) on one processor if and only if

2|t 4+ T; — Dy
vt >0, ) dbf(z,t) .27 L T J C; <t.
TeT i=1 1
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Rate-Monotonic (RM) Scheduling

Karlsruhe Institute of Technology

Priority Definition: A task with a smaller period has higher priority, in
which ties are broken arbitrarily, i.e., Ty < Tj if i <j.
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Rate-Monotonic (RM) Scheduling

Karlsruhe Institute of Technology

Priority Definition: A task with a smaller period has higher priority, in
which ties are broken arbitrarily, i.e., Ty < Tj if i <j.

m Least utilization upper bound for implicit deadlines:
U=)rer % < n(2% — 1) for n tasks
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Rate-Monotonic (RM) Scheduling ﬂ(IT

sruhe Institute of Technology

Priority Definition: A task with a smaller period has higher priority, in
which ties are broken arbitrarily, i.e., Ty < Tj if i <j.

m Least utilization upper bound for implicit deadlines:
U=Yrer % < n(2n — 1) for n tasks
a If the following condition holds, the task set is schedulable under RM:

vVt € T 3t with 0 < t < Dj and W;(t) < t,

where Wj(t) of task T; is defined as follows:

i—1
t
Wi(t) =Ci+ Z ’7-‘ G;.
j=1 T;

7 06,12,2013, in RTSS’13, Vancouver, Canada, by Dr. Jian-Jia Chen
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Optimality of RM and EDF
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w For uniprocessor scheduling, if there exists a feasible schedule,
scheduling jobs by using EDF is also feasible.

u EDF scheduling algorithm is optimal

m If a set of n implicit-deadline tasks, can be feasibly scheduled on a
processor with a fixed-priority assignment, assigning tasks by using rate
monotonic scheduling also leads to a feasible schedule.

m RM scheduling algorithm is optimal for fixed-priority scheduling
a Deadline Monotonic (DM) scheduling algorithm is optimal for
fixed-priority scheduling

06,12,2013, in RTSS’13, Vancouver, Canada, by Dr. Jian-Jia Chen
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Schedulability

a The issue for uniprocessor scheduling is on how to analyze the
schedulability.

® Verifying the schedulability is N/P-hard or coN P-hard
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Karlsruhe Institute of Technology

a The issue for uniprocessor scheduling is on how to analyze the
schedulability.

® Verifying the schedulability is N/P-hard or coN P-hard

a Approximations are possible, but what do we approximate when only
binary decisions (Yes or No) have to be made?

m Answers like probabilistic guarantee are unlikely preferred, e.g., the task
set is 99% schedulable.

u Resource augmentation by speeding up: requires a faster platform
m Resource augmentation by allocating more processors: requires a better
platform
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Schedulability

Karlsruhe Institute of Technology

a The issue for uniprocessor scheduling is on how to analyze the
schedulability.

® Verifying the schedulability is N/P-hard or coN P-hard
a Approximations are possible, but what do we approximate when only
binary decisions (Yes or No) have to be made?
m Answers like probabilistic guarantee are unlikely preferred, e.g., the task
set is 99% schedulable. .
u Resource augmentation by speedlng UP: requires a faster platform

u Resource augmentation by allocating more processors: requires a better
platform
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Resource Augmentation ﬂ(IT

For an algorithm A with a 8 resource augmentation factor, it guarantees
that

if the task set (system) is schedulable (feasible), Algorithm A will also
returns a schedulable (feasible) answer by speeding up the system by a

factor B, or

10 06,12,2013, in RTSS’13, Vancouver, Canada, by Dr. Jian-Jia Chen
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arlsruhe Institute of Technology

For an algorithm A with a 8 resource augmentation factor, it guarantees
that

‘

if the task set (system) is schedulable (feasible), Algorithm A will also
returns a schedulable (feasible) answer by speeding up the system by a
factor B, or

‘

if Algorithm A does not return a schedulable (feasible) answer, the system
is also unschedulable (infeasible) by slowing down by a factor B.

10 06,12,2013, in RTSS’13, Vancouver, Canada, by Dr. Jian-Jia Chen



Let wi(t) of the task T be defined as follows

11

Time Demand Function Revisit for RM ﬂ( T
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Wit) =G+ ik [#] o
t " o Schedulable if for each 7 3t
1

wi(t) = {Tl

with Wj(t) < t.

06,12,2013, in RTSS’13, Vancouver, Canada, by Dr. Jian-Jia Chen



Let wi(t) of the task T be defined as follows

11

Time Demand Function Revisit for RM ﬂ( T

arlsruhe Institute of Technology

Wit) =G+ ik [#] o
t " o Schedulable if for each 7 3t
1

wi(t) = {Tl

with Wj(t) < t.

06,12,2013, in RTSS’13, Vancouver, Canada, by Dr. Jian-Jia Chen



Time Demand Function Revisit for RM ﬂ( T
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Let wi(t) of the task 7; be defined as follows Wi(t) =Ci+ jj ‘ TLJ | < \

t Schedulable if for each 7 3t
wi(t) = {Tj Ci with W;(t) < t.
wi(t) < wi(t) < 2wi(t)

wi (1)
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Let wi(t) of the task T be defined as follows

11

Time Demand Function Revisit for RM

ST

arlsruhe Institute of Technology

Wi(t) = Ci +
wi(t) = Hl a.

wi(t) < wi(t) < 2wi(t)

wi (1)

i1t
T;

&3

Schedulable if for each 7 3t
with Wj(t) < t.

m The linear approximation makes the schedulability test easier

u The test can be done in O(n?)

m The resource augmentation factor is 2. [Albers and Slomka ECRTS’04]
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Demand Bound Function Revisit for EDF

Define demand bound function dbf(T, t) as

T; — D; t—
dbf(T, t) = maX{O, V—FTIIJ } C; = maX{O, {
i

3
1417 dbf(T;, t)

D;
T;

T

sruhe Institute of Technology

| +1}e

0 1 2 3 4 5 6 7 8 9 10 11
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Demand Bound Function Revisit for EDF ﬂ(IT

Define demand bound function dbf(T, t) as

T; — D; t — D;
dbf (7, t) = maX{O, V—FIIJ}Q = max{(), { lJ + 1}01.
T; T;

dbf* (7, t)

~_—dbf(m,t)
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Demand Bound Function Revisit for EDF
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Define demand bound function dbf(T, t) as

t+T; — D; t — D;
dbf (7, t) = maX{O, {MJ}Q = max{(), { lJ + 1}01.
T; T;

dbf* (7, t)

a The linear approximation makes the schedulability test easier

w The test can be done in O(n?)
u The resource augmentation factor is 1.6322. [Chen and Chakraborty,
RTSS’11]
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Minimum Cost Synthesis Problem

Input:
m A sporadic real-time task set T
m FEach task 7; € T has

u Ti: minimum inter-arrival time
m D;: relative deadline

m T7; has w; > 1 different versions with different costs
w 0;(k) is the cost for the k-th version of task T

[ ] C?‘(k) is the corresponding WCET
_ 0: (k)
a Uig‘(k) = C‘T_ as the utilization

® Without loss of generality, 6;(1) < 6;(2) < --- < 6;(w;)

AT

Karlsruhe Institute of Technology

Output:

Select one version m; for task T; such that 7 be feasibly scheduled and the

system cost Y r. 7 6;(m;) is minimized.
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Special Case for Implicit Deadlines with EDF
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m The utilization bound 100% is a necessary and sufficient test.

a The problem is equivalent to the minimum multiple-choice knapsack
problem

a Given a set of items, each with w; versions and each version has a weight
and a value, the objective is to choose one version in each item such that
the total weight is no more than a given limit and the total value is as
small as possible.

a Many results are already known.

m O. H. Ibarra and C. E. Kim. “Fast Approximation Algorithms for the Knapsack and
Sum of Subset Problems.” In: J. ACM (1975), pp. 463-468.

m E. L. Lawler. “Fast Approximation Algorithms for Knapsack Problems”. In: Math.
Oper. Res. 4.4 (1979), pp. 339-356.

06,12,2013, in RTSS’13, Vancouver, Canada, by Dr. Jian-Jia Chen



(«, B)-Approximation A
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= Suppose the optimal system cost is B*(I) for an input instance I.

m An algorithm has an a-approximation if it guarantees to have at most
a - B*(I) system cost for any input instance I

m An («, B)-approximation guarantees to have at most a - B*(I) system
cost by using B speed augmentation factor.

u With respect to speeding-up: the derived solution is a feasible solution by
speeding up the platform to B, and has an a-approximation in the system
cost with respect to the original instance.

m With respect to slowing-down: the derived solution is a-approximation
with respect to a problem instance by slowing down the platform to %

06,12,2013, in RTSS’13, Vancouver, Canada, by Dr. Jian-Jia Chen
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(«, B)-Approximation A
= Suppose the optimal system cost is B*(I) for an input instance I.

m An algorithm has an a-approximation if it guarantees to have at most
a - B*(I) system cost for any input instance I

m An («, B)-approximation guarantees to have at most a - B*(I) system
cost by using B speed augmentation factor.

u With respect to speeding-up: the derived solution is a feasible solution by
speeding up the platform to B, and has an a-approximation in the system
cost with respect to the original instance.

m With respect to slowing-down: the derived solution is a-approximation
with respect to a problem instance by slowing down the platform to %

An optimal algorithm for the minimum multi-choice knapsack problem:
® (1,1) for EDF with implicit deadlines
» (1, ;13) for RM with implicit deadlines

06,12,2013, in RTSS’13, Vancouver, Canada, by Dr. Jian-Jia Chen



Hardness of Approximation
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Theorem

Unless P = NP, there is no polynomial-time (a, 1)-approximation algorithm
for the minimum cost synthesis problem for any « > 1 when considering EDF
or FP scheduling.

Proof

It is based on an L-reduction from the uniprocessor schedulability problem
for sporadic real-time tasks:

|

» EBach task has two versions

m The one with cost equals to 1 has small execution time, and another one
is with “very high” cost with 50% reduction of the execution time.

o

17 06,12,2013, in RTSS’13, Vancouver, Canada, by Dr. Jian-Jia Chen



Outline

Karlsruhe Institute of Technology

Proposed Combinatorial Algorithms

T ERA2AN G

18 06,12,2013, in RTSS’13, Vancouver, Canada, by Dr. Jian-Jia Chen



DM Scheduling for Constrained Deadlines

almost all the equations are different from the paper for simplicity

Deadline Monotonic (DM) is optimal when D; < Tj.

demand

6 version 3 wi*

w Cl=1,02=05C3=025T, =2, D =2.

19 06,12,2013, in RTSS’13, Vancouver, Canada, by Dr. Jian-Jia Chen
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almost all the equations are different from the paper for simplicity
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Deadline Monotonic (DM) is optimal when D; < Tj.

demancw]*(6) =4 wé*(G) =35

0] s (6) = 2.625
* —
9 w (6) SN
s e
.1
6 1 ‘ wit
o :
3+ v
5 | wi*
11 :
0 t t t t t } t t t t t t t
0 1 2 3 4 5 6 7 8 9 10 11 12
w Cl=1,02=05C3=025T, =2, D =2.
w C1=2,03=150C3=1,Ty=8 Dy =6. e

19 06,12,2013, in RTSS’13, Vancouver, Canada, by Dr. Jian-Jia Chen



DM Scheduling for Constrained Deadlines

almost all the equations are different from the paper for simplicity

Karlsruhe Institute of Technology

Deadline Monotonic (DM) is optimal when D; < Tj.

demancwi* (6) = 2 | wé*(G) =35

0] wg*((s) =2.625
* —
9 w (6) SN
s e
.1
6 |
Z: 3 wi* )
3+ \\'f\\j
2, _‘\-/— wi*
11 :
0 t t t t t } t t t t t t t
0 1 2 3 4 5 6 7 8 9 10 11 12
w Cl=1,02=05C3=025T, =2, D =2.
w C1=2,03=150C3=1,Ty=8 Dy =6. e

19 06,12,2013, in RTSS’13, Vancouver, Canada, by Dr. Jian-Jia Chen



DM Scheduling for Constrained Deadlines

almost all the equations are different from the paper for simplicity
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Deadline Monotonic (DM) is optimal when D; < Tj.

demandwi* (6) =1 wé*(G) =35

104 Wi*(G) = 2.625
9 4 w *(6) = 1.7

s | 2 AT T e
-

6

0 t t t t t T t t t t t t t
0 1 2 3 4 5 6 7 8 9 10 11 12
w Cl=1,02=05C3=025T, =2, D =2.
w C1=2,03=150C3=1,Ty=8 Dy =6. e
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Schedulability for DM A

Institute of Technology

Deadline Monotonic (DM) is optimal when D; < Tj.

For a given selection of versions (ml, mo, .

.., mj), task T; can be feasibly
scheduled by the DM scheduling if

i—1
+ (Cfl(ml) + Di . Ule_](m_]) 4 (Dl _ Di—l) 2 U?J(mj)> < Di
=1
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Schedulability for DM AT

te of Technology

Deadline Monotonic (DM) is optimal when D; < Tj.

For a given selection of versions (ml, mo,..., mi), task T; can be feasibly
scheduled by the DM scheduling if

L6y (my) L ;(my)
(G D LU <Dy
J= J=

demand for the first i — 1
tasks at time D;_q

; .

0; (my; ) o pr0i(my) . 1 0;(m;) .

+ (ci +D; - U™ (D D1_1)2Ujl : ) <Dy
J:

20 06,12,2013, in RTSS’13, Vancouver, Canada, by Dr. Jian-Jia Chen



Dynamic Programming

a What is the minimum cost to be feasible?
a What is the minimum cost to be feasible for
the first i tasks under the approximation?
a Two terms matter: the (sub-)demand
0; (m;)

D; - 2}:1 U; and (sub-)demand 23:1 CjJ

21 06,12,2013, in RTSS’13, Vancouver, Canada, by Dr. Jian-Jia Chen
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Dynamic Programming
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. .. . demand
a What is the minimum cost to be feasible?

a What is the minimum cost to be feasible for
the first i tasks under the approximation?

a Two terms matter: the (sub-)demand
D; - 2}:1 U; and (sub-)demand 23:1 C-ej (mj).

Suppose that G(i, d, u) is the minimum system cost, represented by a

version selection my, mo, ..., m;, for the first i tasks such that

a the total utilization for the first i tasks is equal to u,

a the total execution time for the first i tasks is equal to ¢ - Dj, and
vk fitmy) my)

I¥—|—Z <lforanyk=1,2,.

21 06,12,2013, in RTSS’13, Vancouver, Canada, by Dr. Jian-Jia Chen



Dynamic Programming (cont.)

» Constructing G(i, ,u) can be done by using the standard dynamic
programming approach.

® Details [tighter definition and recursion] are in the paper

® The minimum G(N,d,u) for 0 < <land 0 <u<1hasa
(1,2)-approximation factor for N tasks.

u The solution is optimal on a slow-down platform with speed %

m It takes pseudo-polynomial time/space for building the table

22 06,12,2013, in RTSS’13, Vancouver, Canada, by Dr. Jian-Jia Chen
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Dynamic Programming (cont.)
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» Constructing G(i, ,u) can be done by using the standard dynamic
programming approach.

® Details [tighter definition and recursion] are in the paper

® The minimum G(N,d,u) for 0 < <land 0 <u<1hasa
(1,2)-approximation factor for N tasks.

u The solution is optimal on a slow-down platform with speed %

m It takes pseudo-polynomial time/space for building the table

u Instead of building G(i, 0, u) for all possible values of § and u

Approximate the values of interests
Build the table by a user-specified granularity o

Lose some accuracy but earn the efficiency

(1, ﬁ)—approximation with time complexity O((%)2 YN, w;) under the
1

%]

DM scheduling by setting o to for any given # with 0 <y <1

06,12,2013, in RTSS’13, Vancouver, Canada, by Dr. Jian-Jia Chen
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Dynamic Programming (cont.) ﬂ(IT

» Constructing G(i, ,u) can be done by using the standard dynamic
programming approach.
a Details [tighter definition and recursion] are in the paper
® The minimum G(N,d,u) for 0 < 4§ <1 and 0 <u<1 has a
(1,2)-approximation factor for N tasks.
u The solution is optimal on a slow-down platform with speed %

m It takes pseudo-polynomial time/space for building the table

EDF

The some design philosophy also works for EDF scheduling (for arbitrary
deadlines) with some minor changes.

® LULIU VLU VGUIC Uy G USULmBPUCLIUG i GLiUiaL vy U
m Lose some accuracy but earn the efficiency

2 oxcimati bt : Ny2yN
a (1, lfq)—apploxlmatlon with time complexity O((ﬁ) Y.ie; wi) under the

N

DM scheduling by setting o to (31 ] for any given # with 0 <y <1
i
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Classification of N"P-Hard Problems

No algorithm with finite approximation factors
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Classification of N"P-Hard Problems
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No algorithm with finite approximation factors

PTAS (Polynomial-time Approximation Scheme): For each constant € > 0,
a polynomial-time partitioning algorithm A¢, with approximation factor
(1+e€).

a complexity depends on %, which is assumed to be a constant, e.g., O(n
a allows for a trade-off of run-time versus accuracy

LIS}

06,12,2013, in RTSS’13, Vancouver, Canada, by Dr. Jian-Jia Chen
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d-Dimensional Representative Vector Set (Chen and
Chakraborty, ECRTS’12)
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Among t € (0, oo}, choose t1,...,tq for density values w for
J

ji=1...,d

a Representative For the accuracy

a Constant dimensions For complexity
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d-Dimensional Representative Vector Set (Chen and
Chakraborty, ECRTS’12)

Among t € (0, oo}, choose t1,...,tq for density values %
ji=1...,d

a Representative For the accuracy

a Constant dimensions For complexity

tj)
')
5 for

Karlsruhe Institute of Technology

A d-dimensional representative vector set ) for the given task set 7 under

a user-defined tolerable error 0 < 7:

m for any configuration 7 and the corresponding vector set V)

1
Y T) > max Z Gij = 1+17)7(7'),
Less sampling points Bounded error

where y(7) is the maximum density of 7.
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(14 €,1+ n)-Approximation for EDF ﬂ( T

Karlsruhe Institute of Technology

a Chen and Chakraborty, ECRTS’12: when % is a constant, the
number of representative dimensions is a constant.

a How do we achieve (1+ €, 1+ #)-Approximation?

a Build a d-dimensional representative vector set V for 1417 speed-up
guarantee
m The problem is reduced to a minimum-cost multiple choice
multiple-dimension knapsack problem
w Set Z = min{N, [2]}, bounded by a constant
m Enumerate the combinations to select the versions for Z large tasks
m Select the versions of the other N — Z light tasks by using linear
programming
m Round the fractional variables to yield a feasible solution
m Return the best found feasible solution as the result
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Conclusion

Karlsruhe Institute of Technology

a (a, B)-approximation for combinatorial optimization problems in RTS

a With respect to speeding-up: the platform is speeded up to B to ensure
the feasibility and optimality
u With respect to slowing-down: the derived solution is a-approximation

with respect to a problem instance by slowing down the platform to %

EDF DM (D; <'Ty)
pseudo-polynomial (1,1.6322) (1,2)
polynomial (1, 1'16;3’272 ) (1, %)
polynomial (rery) 7772777
% is a constant
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