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ÅIt is not a priori known when, or whether, such 
degradation will occur (non-clairvoyant). 

ÅWe do however assume that the system is capable of 
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ÅConstraints to construct S := xi,j җ л 

ïEach job receives adequate execution (normal) 

ïThe capacity of each interval is respected 

ïDegradation at any time should not cause a  
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