
Mixed-Criticality Scheduling upon
Varying-Speed Processors

Sanjoy Baruah and Zhishan Guo

Department of Computer Science,

UNC Chapel Hill

Outline

ÅMotivation

ÅModel

ÅProblem Description

ÅAlgorithm

ÅSimulation and Discussion

ÅConclusion and further work

Outline

ÅMotivation

ÅModel

ÅProblem Description

ÅAlgorithm

ÅSimulation and Discussion

ÅConclusion and further work

Mixed-Criticality Systems

ÅThe analysis of Mixed-Criticality embedded systems
has been identified as one of the core foundational
focal areas in the emerging discipline of Cyber-
Physical Systems.

Mixed-Criticality Systems

ÅThe analysis of Mixed-Criticality embedded systems
has been identified as one of the core foundational
focal areas in the emerging discipline of Cyber-
Physical Systems.

ÅMixed-/ǊƛǘƛŎŀƭƛǘȅ ŀǊƛǎŜǎ ŦǊƻƳΧ

ïWCET Cost

ïPeriods

ciLO

ciHI

t

Mixed-Criticality Systems

ÅThe analysis of Mixed-Criticality embedded systems
has been identified as one of the core foundational
focal areas in the emerging discipline of Cyber
Physical Systems.

ÅMixed-/ǊƛǘƛŎŀƭƛǘȅ ŀǊƛǎŜǎ ŦǊƻƳΧ

ïWCET Cost

ïPeriods

ïProcessing Speeds

ciLO

ciHI

t

t

Varying-Speed Processors

Hardware
Design

Ambient
Temperature

Varying Processor Speed

Work Load +
Battery
Strength

Varying-Speed Processors

Hardware
Design

Varying Processor Speed

Recover late signals (at circuit level)
by delaying the next clock tick

Varying-Speed Processors

Hardware
Design

Ambient
Temperature

Varying Processor Speed

Temperature Changing
Linux: cpuspeed

Varying-Speed Processors

Hardware
Design

Ambient
Temperature

Varying Processor Speed

Work Load +
Battery
Strength

Dynamic Freq. Scaling

Lightly-Loaded
Processors

Clock Rates
(voltage) Reducing

Varying-Speed Processors

Hardware
Design

Ambient
Temperature

Varying Processor Speed

Work Load +
Battery
Strength

Applications

Wireless Network

Outline

ÅMotivation

ÅModel

ÅProblem Description

ÅAlgorithm

ÅSimulation and Discussion

ÅConclusion and further work

Model - Varying-Speed Processors

Processor
speed
s(t)

Time t 0

Model - Varying-Speed Processors

ÅComputing capacity within interval [a,b):

Processor
speed
s(t)

Time t 0 a b

Model - Varying-Speed Processors

ÅNormal mode vs. Degraded mode

 tǊƻŎŜǎǎ ǎǇŜŜŘ җ sn Process speed < snΣ ōǳǘ җ sd

ïDegraded mode: Computing capabilities are diminished

Model - Varying-Speed Processors

ÅNormal mode vs Degraded mode

ÅDegraded mode: Computing capabilities are diminished

t
0

sn

sd

Processor
speed
s(t)

Model - Varying-Speed Processors

t
0

sd

Normal mode
Degraded mode

ÅNormal mode vs Degraded mode

sn

Processor
speed
s(t)

Model - Varying-Speed Processors

t 0

Normal mode
Degraded mode

ÅNormal mode vs Degraded mode

sn

sd

May switch mode
at any time

Model - Varying-Speed Processors

t 0

Normal mode
Degraded mode

ÅIt is not a priori known when, or whether, such
degradation will occur (non-clairvoyant).

ÅWe do however assume that the system is capable of
self-monitoringΥ ǘƘŜ ǇǊƻŎŜǎǎƻǊ άƛƳƳŜŘƛŀǘŜƭȅέ ƪƴƻǿǎ ƛŦ
and when such degradation occurs.

 sn

sd

Outline

ÅMotivation

ÅModel

ÅProblem Description

ÅAlgorithm

ÅSimulation and Discussion

ÅConclusion and further work

The Problem

ÅGiven MC instance

Job set
HI-Criticality

Jobs

LO-Criticality
Jobs

Independent,
Preemptive
One shot job model

Mixed-Criticality systems

ÅA job Ji - (ai, di, ci, ̝ i)

ïRelease time ai

ïDeadline di

ïWorst Case Execution Time ci,

ïCriticality level ̝ i ŗ {LO, HI}.

ÅAn Example

t
2 4 0

s(t)

JHI JLO

JLO=(0,1,2,Lo), JHI=(0,2,4,Hi)

The Problem

ÅGiven MC instance + varying-speed processor

HI-Criticality
Jobs

LO-Criticality
Jobs

 sn sd

Uni-processor

The Problem

ÅGiven MC instance + varying-speed processor,

ÅConstruct a correct scheduling strategy that

HI-Criticality
Jobs

LO-Criticality
Jobs

 sn

The Problem

ÅGiven MC instance + varying-speed processor,

ÅConstruct a correct scheduling strategy that

HI-Criticality
Jobs

LO-Criticality
Jobs

 sd

Outline

ÅMotivation

ÅModel

ÅProblem Description

ÅAlgorithm

ÅSimulation and Discussion

ÅConclusion and further work

Algorithm - Overview

ÅConstruct a scheduling table S for all jobs (with
Linear Programming) prior to run-time

Algorithm - Overview

ÅConstruct a scheduling table S for all jobs (with
Linear Programming) prior to run-time

ÅUse S when processor is in normal mode

Algorithm - Overview

ÅConstruct a scheduling table S for all jobs (with
Linear Programming) prior to run-time

ÅUse S when processor is in normal mode

ÅIf at any instant processor is detected in degraded
mode:

ïTable S is no longer used

ïά5ƛǎŎŀǊŘέ ŀƭƭ [h-criticality jobs immediately

ïExecute the (remaining) HI-criticality jobs according to EDF

Algorithm - Overview

ÅConstruct a scheduling table S for all jobs (with
Linear Programming) prior to run-time

ÅUse S when processor is in normal mode

ÅIf at any instant processor is detected in degraded
mode:

ïTable S is no longer used

ïά5ƛǎŎŀǊŘέ ŀƭƭ [h-criticality jobs immediately

ïExecute the (remaining) HI-criticality jobs according to EDF

ÅWhenever processor returns to normal mode, dropped
jobs are recovered according to S

Algorithm - An Example

t
2 4 0

sn = 1
sd = 0.5

s(t)

I ai ci di i̝

JLO 0 1 2 LO

JHI 0 2 4 HI

JHI JLO

Algorithm - An Example

t
2 4 0

sn = 1
sd = 0.5

s(t)

Intervals [0,2) [2,4)

JLO 1 0

JHI 1 1

S

I ai ci di i̝

JLO 0 1 2 LO

JHI 0 2 4 HI

JHI JLO

Algorithm - An Example

t
2 4 0

sn = 1
sd = 0.5

s(t)

Intervals [0,2) [2,4)

JLO 1 0

JHI 1 1

S

I ai ci di i̝

JLO 0 1 2 LO

JHI 0 2 4 HI

JHI JLO

JHI

Algorithm - An Example

t
2 4 0

sn = 1
sd = 0.5

s(t)

Intervals [0,2) [2,4)

JLO 1 0

JHI 1 1

S

I ai ci di i̝

JLO 0 1 2 LO

JHI 0 2 4 HI

JHI
JLO JHI

Algorithm - An Example

t
2 4 0

sn = 1
sd = 0.5

s(t)

Intervals [0,2) [2,4)

JLO 1 0

JHI 1 1

S

I ai ci di i̝

JLO 0 1 2 LO

JHI 0 2 4 HI

JHI JLO JHI
JHI

Algorithm - An Example

t
2 4 0

sn = 1
sd = 0.5

s(t)

Intervals [0,2) [2,4)

JLO 1 0

JHI 1 1

S

I ai ci di i̝

JLO 0 1 2 LO

JHI 0 2 4 HI

JHI JLO JHI
JHI

Algorithm - An Example

t
2 4 0

sn = 1
sd = 0.5

s(t)

Intervals [0,2) [2,4)

JLO 1 0

JHI 1 1

S

I ai ci di i̝

JLO 0 1 2 LO

JHI 0 2 4 HI

JHI JLO JHI
JHI

Algorithm - An Example

t
2 4 0

sn = 1
sd = 0.5

s(t)

Intervals [0,2) [2,4)

JLO 1 0

JHI 1 1

S

I ai ci di i̝

JLO 0 1 2 LO

JHI 0 2 4 HI

JHI JLO

Algorithm - An Example

t
2 4 0

sn = 1
sd = 0.5

s(t)

Intervals [0,2) [2,4)

JLO 1 0

JHI 1 1

S

I ai ci di i̝

JLO 0 1 2 LO

JHI 0 2 4 HI

JHI JLO

JHI

Algorithm - An Example

t
2 4 0

sn = 1
sd = 0.5

s(t)

Intervals [0,2) [2,4)

JLO 1 0

JHI 1 1

S

I ai ci di i̝

JLO 0 1 2 LO

JHI 0 2 4 HI

JHI JLO

JHI

Algorithm - An Example

t
2 4 0

sn = 1
sd = 0.5

s(t)

Intervals [0,2) [2,4)

JLO 1 0

JHI 1 1

S

I ai ci di i̝

JLO 0 1 2 LO

JHI 0 2 4 HI

JLO

JHI

JH

I

Normal mode => recovery

JHI

JLO

Algorithm - An Example

t
2 4 0

sn = 1
sd = 0.5

s(t)

Intervals [0,2) [2,4)

JLO 1 0

JHI 1 1

S

I ai ci di i̝

JLO 0 1 2 LO

JHI 0 2 4 HI

JHI

JH

I

JHI

JLO may not
meet its deadline

JHI JLO

Algorithm - An Example

t
2 4 0

sn = 1
sd = 0.5

s(t)

Intervals [0,2) [2,4)

JLO 1 0

JHI 1 1

S

I ai ci di i̝

JLO 0 1 2 LO

JHI 0 2 4 HI

JHI

JH

I

Algorithm - Linear Programming

ÅTo construct the table S := xi,j όҗ лύ

ïamount of execution assign to job Ji in interval Ij

Ji Ji

Algorithm - Linear Programming

ÅConstraints to construct S:= xi,j җ л

ïEach job receives adequate execution under
normal circumstances

t

Ji

s(t)

J? J?

ai di

J?

Algorithm - Linear Programming

ÅConstraints to construct S := xi,j җ л

ïEach job receives adequate execution (normal)

ïThe capacity of each interval is respected

t

Ji

ai di

J?
J?

a?

J?

J?

Ji

s(t)

Algorithm - Linear Programming

ÅConstraints to construct S := xi,j җ л

ïEach job receives adequate execution (normal)

ïThe capacity of each interval is respected

ïDegradation at any time should not cause a
HI-critilicality job miss its deadline

Ji Ji

tm

Ji
s(t)

t l

J?
J? J?

s
d

