

Self-Adapting MAC Layer for Wireless Sensor Networks

Mo Sha, Rahav Dor, Gregory Hackmann, Chenyang Lu Cyber-Physical Systems Laboratory Washington University in St. Louis

Tae-Suk Kim, Taerim Park
Samsung Advanced Institute of Technology
Samsung Electronics

Motivation

- Numerous MAC protocols exist in the literature
 - □ CSMA/CA vs. TDMA
 - Sender-initiated vs. receiver-initiated
- None remains optimal under
 - changes in ambient wireless environment;
 - changes in network traffic;
 - changes in QoS requirement in multiple dimensions.

Wireless Health Application

Long battery lifetime

Resilient to interference

Low latency

•

Problem Formulation

- Given current network load (inter-packet interval)
- Given current wireless noise level (signal strength)
- Given user's preferred order of QoS attributes
 - Energy consumption, reliability, and latency

 Goal: select MAC protocol with optimal QoS in the specified order of the attributes

SAML: Self-Adapting MAC Layer

One-protocol-fit-all MAC

Self-Adapting MAC Layer (SAML)

- → Provision multiple MACs in an efficient manner.
- → Select and activate the optimal protocol under the current load, condition and requirements.

Network Model

- Star network
 - ☐ Hub works as the master
 - Sensors works as slaves
 - □ Communicate via 802.15.4 radio
- Hub: a smart phone
 - Hold multiple MAC protocols
 - Select MAC protocols
 - Coordinate network-wide MAC switch

- Sensors
 - Hold multiple MAC protocols
 - Follow hub's MAC decision to switch protocols

System Architecture: Hub

- RMA (Reconfigurable MAC Architecture) supports dynamic switching among different MACs
- MAC Selection Engine selects MAC protocols based on application's preference

System Architecture: Sensors

RMA (Reconfigurable MAC Architecture) supports dynamic switching among different MACs

RMA

- MAC Container stores the MACs available at runtime
- Upper Switch & Lower Switch: unified interfaces to applications & radio core
- MAC Control Engine controls the ID of the active MAC, maintains the neighborhood table, and manages protocol

MAC Container

- Designed to hold reusable MAC components
- Re-wired on the fly to construct various MACs
- Realization in TinyOS
 - Build on components from MAC Layer Architecture (MLA) developed by CPSL [SenSys'07]
 - TinyOS compiler only creates one instance for each component
 - Add wrapper to shared component to avoid conflicts
 - Wrapper stores ID of the current active MAC protocol

Switches

- Provide uniform interfaces to the layer above and below the MAC layer
 - Upper switch: start/stop MAC, CCA/backoff control, send, receive
 - Use a select signal to determine which MAC is going to respond
- Realized in TinyOS/nesC via parameterized wiring

MAC Control Engine

- Protocol Control
 - Responsible for synchronizing active MAC ID in all wrappers/switches within a node
 - Update active MAC IDs during switch atomicly
- Network Control
 - Manage nodes join/leave network
 - Hub: periodically broadcast current active MAC ID
 - New node: run baseline-MAC to snoop broadcasted ID
- Switching Control
 - Reliably notify all network devices when switching MAC

MAC Selection Engine

- Traffic Monitor keeps track of mean/variance of Inter-Packet Interval (IPI)
- Noise Monitor measures the external interference level in the environment

Classifier determines the best MAC according to the current REL order

Decision Tree Classifier

- Why decision tree classifier?
 - Limited, discrete choices to make
 - □ Fast at run-time
 - Consumes small memory footprint
- Decision tree training
 - Run offline experiments that vary the features while recording the operating characteristics and the MAC protocol in use.
 - □ Characteristics: reliability, energy consumption, and latency
 - □ Features: QoS order, mean and variance of Inter-packet Interval, mean and variance of the RSSI

Implementations

- Implemented in TinyOS 2.1.1 on TelosB
- Select five MACs as examples
 - BoX-MAC, pure TDMA, RI-MAC, adaptive TDMA, ZigBee-like
- Build three prototypes of RMA
 - □ CSMA/TDMA: BoX-MAC + pure TDMA
 - □ SI/RIMAC: BoX-MAC + RI-MAC
 - 5-MAC prototype
- Decision tree classifier
 - Use Weka with C4.5 algorithm
 - Offline experiments for MAC comparisons: 4624 training examples

Memory Footprint

RMA CSMA/TDMA adds 11% ROM and 4% RAM to a single MAC

	ROM (bytes)	RAM (bytes)
BoX-MAC	25308	1114
pure TDMA	25362	1202
RI-MAC	25132	1268
adaptive TDMA	25418	1126
ZigBee MAC	27168	1272
RMA CSMA/TDMA	28016	1254
RMA SI/RI-MAC	27752	1896
RMA 5-MAC	29990	1968

ROM and RAM usage for each single MAC and RMA prototype

Memory Footprint

RMA 5-MAC adds 10% ROM and 55% RAM to a single MAC

	ROM (bytes)	RAM (bytes)
BoX-MAC	25308	1114
pure TDMA	25362	1202
RI-MAC	25132	1268
adaptive TDMA	25418	1126
ZigBee MAC	27168	1272
RMA CSMA/TDMA	28016	1254
RMA SI/RI-MAC	27752	1896
RMA 5-MAC	29990	1968

ROM and RAM usage for each single MAC and RMA prototype

Benefit from MAC components reuse in SAML

Micro-benchmark Experiments

The switching process

- takes **3.5** ms
- consumes 2.9 uJ of energy

Current and time measured by a power meter from Monsoon Solutions during switch from BoX-MAC to pure TDMA.

Case Study

- Emulating a wireless health application
 - □ One sensor on wrist, one sensor on chest, and one hub in pocket
 - Sensors generate packets at 2 pkt/s at regular and 20 pkt/s for an hour after detecting an abnormal event
 - QoS order (regular): Energy efficiency>Reliability>Latency
 - QoS order (abnormal): Reliability>Latency>Energy efficiency
- Experimental setup
 - □ 1st: BoX-MAC, 2nd: pure TDMA, 3rd:RI-MAC, 4th: SAML
 - 12-hour measurement per day (10am-10pm)
 - Volunteer follows the same schedule for daily activities
 - □ 3 abnormal event generated daily at 12pm, 2pm, and 4pm

Case Study

- SAML meets reliability requirement (>99%)
- and saves 32% of energy (1451.7 J)

PDR of BoX-MAC, pure TDMA, RI-MAC, and SAML during 12 hours

Related Works

- MLA [SenSys'07]
 - □ Library of reusable components for MAC implementation
- Distributing new TinyOS image or fragments of code
 - Deluge [SenSys'04], Task-Cruncher [IPSN'10]
 - High communication & runtime overhead
- Hybrid MACs
 - Z-MAC [SenSys'05], Funneling-MAC [SenSys'06], IDEA [MobiSys.10]
 - Monolithic implementation with fixed set of features
- Runtime parameter adaption
 - □ pTunes [IPSN'12]
- Adaptive MACs in IEEE 802.11 networks
 - MULTIMAC [JSAC'10]
 - Optimize for single dimension and high static overhead

Conclusion

- A fixed MAC protocol cannot meet varying requirements in dynamic environments
 - □ Challenge with the convergence of mobile phones and sensors
- SAML: Self-Adapting MAC Layer for WSNs
 - Reconfigurable MAC Architecture (RMA): switch MAC protocols on the fly
 - □ A learning-based MAC Selection Engine: selects protocol most suitable for the current condition and requirements
 - Implemented in TinyOS 2.1.1 on TelosB
- SAML effectively adapts MAC layer protocol to meet varying application requirements in dynamic environments