
D2: Anomaly Detection and Diagnosis
in Networked Embedded Systems

by Program Profiling and Symptom Mining

Wei Dong1, Chun Chen1, Jiajun Bu1,

Xue Liu2, Yunhao Liu3

1. Zhejiang University; 2. McGill University;

3. Tsinghua University

2013-12-5

The 34th IEEE Real-Time Systems Symposium (RTSS 2013)
Vancouver, Canada

Introduction
 Detecting and diagnosing anomalies in networked

embedded systems is difficult.
 Case 1: LOFA-argo

 Low data rate due to
malfunction in TMAC

 Causes are left unclear

2

Introduction
 Case 2: GreenOrbs[SenSys’09, INFOCOM’11]

Bugs in TinyOS low level drivers requires

considerable time to fix

3

GreenOrbs SVN repository
Version Date Update

4

Related work

 There are numerous existing works

Node-level debugging, tracing and logging
Clairvoyant [SenSys’07], NodeMD [MobiSys’07], DT
[SenSys’10], Aveksha [SenSys’11], T-Morph [FSE’12]
…

Network-level diagnosis
Sympathy [SenSys’05], PAD [SenSys’08], AD
[INFOCOM’11], LD2 [INFOCOM’12] …

5

Motivation

 Node-level debugging tools vs. Network-level diagnosis
tools

 A simple combination of the two will cause large
overhead. Moreover, some errors may not be
reproducible

 To close the gap, we propose D2, a new anomaly
detection and diagnosis method by combining program
profiling and symptom mining

6

D2’s main idea
 We employ binary instrumentation to perform

lightweight function count profiling. Our method treats
the program as a black box, thus is scalable for a wide
range of applications.

 Based on the fine-grained statistics, we employ PCA
(Principal Component Analysis) based approach for
automatically detecting network problems.

 D2 is able to point programmers closer to the most likely
causes by a novel approach combining statistical tests
and program call graph analysis.

7

D2’s overview

Request

Profiles

PC

Failure
Detection

Failure
Diagnosis

Binary
instrumentation

Diagnosis
Report

8

Binary instrumentation

 The D2 module (at the sensor node) finds the start of
each function

 The D2 module uses the trampoline technique to track
the count of each function’s execution

 The D2 module allocates free RAM space and
dynamically updates the function counters (i.e., profile)

 The D2 module adaptively takes snapshots of the
function counters and sends the profile to the external
flash (for later analysis)

9

The trampoline technique

Inst 1
Inst 2

call (2) save context
(3) counter[1]++
(3) call check()
(4) restore context
(5) Inst 1
(6) ret 1

(1) replace

mirror

10

Adaptively taking snapshots

 Why?

Time variations in the long-term execution can be
captured

 How?

Native approach: take snapshots every fixed interval,
e.g., 10 minutes

Problem: extra overhead if no activities happened

Our approach: take snapshots when the total function
count in a period reaches a threshold, e.g., 5000.

11

Problem detection

 What we have? snapshots of function counters

 What we want to do? Which snapshots are anomalies























30
20

30
20

...























0
0

0
0

3
2
...
4
1 Send()

Receive()

sense()

blink()





















30
20

30
20

...

12

Anomaly detection

 Key assumptions:

During normal executions the relative frequency of
two function counts in a time window usually stays
the same.

For example, the ratio between functions send() and
receive() in the CTP component is usually very stable

The actual count does not matter (as it depends on
workloads), but the ratio among different function
counts matters.

13

PCA (Principal Component Analysis)

 PCA captures patterns in high-dimensional data by
automatically choosing a set of principal components
(i.e., coordinates).

 PCA is able to capture the essence of correlation in the
data.

14

PCA (Principal Component Analysis)

0 2000 4000 6000 8000 10000 12000
0

2000

4000

6000

8000

10000

12000

of

 s
en

d(
)

of receive()

Sn
Sa

f

SPE

A

C

B
fa

SPE

f

fa

15

Problem diagnosis

 What we know?

Which snapshots are anomalies

E.g., node 2 in the first day exhibits abnormal
behavior

What we do not know?
Which functions are wrong?























0
0

0
0

3
2
...
4
1

16

t-tests

 We use t-tests to compare data points in the normal
space with those in the abnormal space

 We compare n function counts and n2 function count
ratios

17

Generating diagnosis report

 What we have now?

 a list of suspicious functions or ratios between two
functions ranked by their statistical significance

 The result can further be refined by considering the
call/post relationship between functions.

 D2 obtains the call/post relationships by program
analysis

 D2 generates diagnosis report showing both statistical
difference as well as the call/post relationships.

18

Evaluations

 We implement D2 on TelosB/TinyOS

 We evaluate D2’s overhead in terms of

Memory overhead

CPU overhead

 We evaluate D2’s efficacy using cases from real-world
sensor systems

19

RAM overhead (bytes)

Benchmark Without D2 With D2

Blink 48 196

RadioCountToLeds 70 284

TestDissemination 85 344

TestNetwork 157 632

Oscilloscope 101 408

20

Program flash overhead

0

5

10

15

20

e r c e t a g e (%)Pe
rc

et
ag

e
 (%

)

21

CPU overhead

Benchmark Without D2 With D2

Blink 1.38% 1.59%

RadioCountToLeds 1.22% 1.45%

TestDissemination 1.40% 1.60%

TestNetwork 2.16% 2.50%

Oscilloscope 4.82% 5.57%

22

Case 1: flash broken

 Symptom: nodes with broken external flash have CPU
utilization (~90%) much higher than normal nodes (<5%)

 Without D2, we do not know how to fix the code

 With D2

Automatically detect the abnormal nodes

Help us diagnosis, i.e., point us closer to the buggy
function

23

Case 1: diagnosis report

SchedulerBasicP__Task
Basic__runTask

Stm25pSpiP__release
AndRequest

ArbiterP__1__Resource
__request

ArbiterP__1__Resource
__release

24

Case 1: fixing the problem

 Looking into the suspicious functions, we could easily
guess the causes of the bug

when the code powers up the external flash, it does not
check the status of the hardware. Therefore, if the
external flash is broken, the code would repeatedly
make requests to acquire the resource

 We finally fix the bug in Spi.powerUp() function.

 This bug still exists in the latest TinyOS

25

Case 2: CTP queue overflow

 Symptom: nodes near the sink are more likely to
experience heavier losses

 Without D2

we do not know how improve the design

 With D2

Help us diagnosis, i.e., point us closer to the
suspicious function

26

Case 2: diagnosis report

spiPacket_sendDone

waitForNextPacket

spiPacket_sendDone

beginReceive

spiPacket_sendDone

Receive

AMsend_send

waitForNextPacket

AMsend_send

beginReceive

AMsend_send

Receive

setNetwork

waitForNextPacket

setNetwork

beginReceive

setNetwork

Receive

Send

waitForNextPacket

Send

beginReceive

Send

Receive

27

Case 2: fixing the problem

 The diagnosis report indicates that the ratio between
receive() and send() decreases in a few snapshots

 Looking into the code, we indeed find that the default
CTP implementation does not turn on the congestion
control mechanism.

 We implement a simple congestion control mechanism
which address the problem fairly well.

28

Conclusion

 We propose D2, a novel method combining program
profiling and symptom mining for detecting and
diagnosing anomalies in networked embedded systems.

 We propose a novel approach combining statistical tests
and program call graph analysis to point programmers
closer to the most likely causes.

 We implement our method and demonstrate its
effectiveness using case studies from real sensor
network applications.

29

Thank you!
dongw@zju.edu.cn

Q & A

	D2: Anomaly Detection and Diagnosis �in Networked Embedded Systems �by Program Profiling and Symptom Mining
	Introduction
	Introduction
	GreenOrbs SVN repository
	Related work
	Motivation
	D2’s main idea
	D2’s overview
	Binary instrumentation
	The trampoline technique
	Adaptively taking snapshots
	Problem detection
	Anomaly detection
	PCA (Principal Component Analysis)
	PCA (Principal Component Analysis)
	Problem diagnosis
	t-tests
	Generating diagnosis report
	Evaluations
	RAM overhead (bytes)
	Program flash overhead
	CPU overhead
	Case 1: flash broken
	Case 1: diagnosis report
	Case 1: fixing the problem
	Case 2: CTP queue overflow
	Case 2: diagnosis report
	Case 2: fixing the problem
	Conclusion
	Thank you!

